報告時間:2022年11月11日(星期五)14:30-15:30
騰訊會議号:129 631 310
報告題目: On the Cauchy problem of a two component b-family equations in
.
報告人: 吳興龍 教授(武漢理工大學)
報告摘要: In this talk, we study the well-posedness, blow-up scenario , global solution and traveling wave solution of a two-component b-family equations in space
,
, which is open problem for p≠2. First, we establish the local well-posedness for the equations by kato's semigroup theory, where we introduce the definition of dissipative operator to prove
for p≠2. Second, we improve the blow-up scenario of the strong solution for the equations derived by Liu and Yin. Third, by the conservation law and fluid equation, the global solution of this equations is derived. Finally, we prove the equations has a family of traveling wave solutions. This talk is based on a joint work with Lijun Du, who graduated from Hubei University of Arts and Science in 2019.
報告人簡介:吳興龍教授,2012年7月博士畢業于中山大學數學學院,随後在北京物理與計算數學研究所師從郭柏靈院士從事博士後工作,2014年博士後出站後在中國科學院武漢物理與數學研究所從事研究工作,2019年調入武漢理工大學理學院并晉升為教授,博士生導師。研究方向:1.非線性色散波方程(Camassa-Holm方程DP方程,非線性Schrodinger方程) ;2.雙曲守恒律; 3.流體力學(可壓與不可壓Navier-Stokes方程以及Euler方程); 4. 等離子方程(Zakharov方程,雙流體方程)。自2010年以來在 J. Funct. Anal.,Indiana Univ. Math. J., Annali Sc. Norm. Sup. Pisa, Nonlinearity,JHDE, JMFM, Nonlinear Anal., Differ. and Integral equations, DCDS-A等國際SCI期刊上發表30多篇學術論文。學術論文已被國際期刊引用的總次數超過350餘次(其中論文單篇最高被引次數為130餘次)。應邀為J. Funct. Anal.,SIAM J. Math. Anal.,JDE,以及Phys. Lett. A等10多個國際期刊的審稿人。目前已主持了國家自然科學基金項目4項,并參與國家自然科學基金項目6項。